


 

 

Introduction 

This study focuses on understanding the effect of various variables on blood pressure, a key 

indicator of cardiovascular health. Blood pressure is commonly measured in terms of 

systolic (the pressure in arteries when the heart beats) and diastolic (the pressure in arteries 

between heartbeats) values, expressed in millimeters of mercury (mmHg). The dataset under 

investigation includes measurements from a population sample, it includes the following 

variables: Age, BSA (Body Surface Area), Weight, DUR (Drug Utilization Review), Pulse 

and Stress. 

Objective of the Study 

The primary objective of this study is to analyze the relationship between blood pressure 

and various factors to identify potential determinants and risk indicators of hypertension. 

Specifically, the study aims to: 

1. Determine whether the variables influence blood pressure. 

2. Interpretation of the marginal effect of each variable on blood pressure. 

By addressing these objectives, this study seeks to contribute to a better understanding of 

blood pressure patterns and the factors influencing them, thereby supporting efforts to 

improve cardiovascular health. 

In order to study this impact, a sample of 20 individuals with high blood pressure was chosen 

and It had been measured the following:  

Response variable(s): 

Blood Pressure: Measurement of the pressure or force of blood inside the arteries, 

measured in millimeters of mercury (mmHg).  

Explanatory variable(s):  

1. BSA (Body Surface Area): The area of the external surface of the body, expressed 

in square meters (𝑚2); used to calculate metabolic, electrolyte, nutritional 

requirements, drug dosage, and expected pulmonary function measurements.  



 

 

2. DUR (Drug Utilization Review): Ongoing, systematic quality-improvement activity 

constructed to ensure the effective and appropriate use of medicines. It can also be 

considered a formulary system management technique.   

3. Weight: Weight of the respondents measured in kilograms. 

4. Age: Age of the respondents measured in years.  

5. Pulse: The regular movement of blood through the body when the heart is beating, 

measured in beats per minute. 

6. Stress: State of worry or mental tension caused by a difficult situation. Stress is a 

natural human response that prompts us to address challenges and threats in our lives. 

Everyone experiences stress to some degree. 

 

Correlation Matrix visualization 

Relations between explanatory variables and response variable: 

1. A strong positive linear relationship between Age and Blood Pressure (𝑟 =  0.659) 

2. A very strong positive linear relationship between Weight and Blood Pressure (𝑟 =

 0.95) 

3. A very strong positive linear relationship between BSA and Blood Pressure  

(𝑟 =  0.866) 

4. A weak to moderate positive linear relationship between DUR and Blood Pressure 

(𝑟 =  0.293) 

5. A strong positive linear relationship between Pulse and Blood Pressure (𝑟 =  0.721) 

https://dictionary.cambridge.org/dictionary/learner-english/regular
https://dictionary.cambridge.org/dictionary/learner-english/movement
https://dictionary.cambridge.org/dictionary/learner-english/blood
https://dictionary.cambridge.org/dictionary/learner-english/body
https://dictionary.cambridge.org/dictionary/learner-english/heart
https://dictionary.cambridge.org/dictionary/learner-english/beating


 

 

6. A very weak positive linear relationship between Stress and Blood Pressure (𝑟 =

 0.164) 

Relations between explanatory variables:  

1. A moderate positive linear relationship between Weight and Age (𝑟 =  0.407). 

2. A weak to moderate positive linear relationship between BSA and Age(𝑟 =  0.378). 

3. A weak to moderate linear relationship between DUR and Age (𝑟 =  0.344). 

4. A strong linear relationship between Pulse and Age (𝑟 =  0.619). 

5. A moderate to weak linear relationship between Stress and Age (𝑟 =  0.368). 

6. A very strong positive linear relationship between BSA and Weight (𝑟 =  0.875),  

7. A weak to moderate positive linear relationship between DUR and Weight (𝑟 =

 0.201). 

8. A strong positive linear relationship between Pulse and Weight (𝑟 =  0.659). 

9. A very weak positive linear relationship between Stress and Weight (𝑟 =  0.034). 

10.  A very weak positive linear relationship between DUR and BSA (𝑟 =  0.131). 

11.  A moderate positive linear relationship between Pulse and BSA (𝑟 =  0.465). 

12.  A very weak positive linear relationship between Stress and BSA (𝑟 =  0.018). 

13.  A moderate positive linear relationship between Pulse and DUR (𝑟 =  0.402). 

14.  A weak to moderate positive linear relationship between Stress and DUR (𝑟 =

 0.312). 

15.  A moderate positive linear relationship between Stress and Pulse (𝑟 =  0.506). 

Nearly all relationships between the explanatory variables had 𝑟 less than 0.7. However, in 

the relationship between BSA and Weight, 𝑟 is greater than 0.7. Meaning they’re highly 

correlated hence there are concerns for multicollinearity. 

Full multiple-linear regression model: 

Mathematical notation: 

 𝑦 =  𝛽
0

+ 𝛽
1
𝑥1 + 𝛽

2
𝑥2 + 𝛽

3
𝑥3 + 𝛽

4
𝑥4 + 𝛽

5
𝑥5 + 𝛽

6
𝑥6 + 𝜖𝑖 

Substituting the y and x’s with their variable names: 

𝐵𝑙𝑜𝑜𝑑 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 =  𝛽0 + 𝛽1𝐴𝑔𝑒 + 𝛽2𝑊𝑒𝑖𝑔ℎ𝑡 + 𝛽3𝐵𝑆𝐴 + 𝛽4𝐷𝑢𝑟 + 𝛽5𝑃𝑢𝑙𝑠𝑒 + 𝛽6𝑆𝑡𝑟𝑒𝑠𝑠 + 𝜖𝑖  



 

 

Deterministic part assumptions 

Assumption 1. The parameters are linear in the deterministic part of the 

model. 

● The assumption is valid since all regression coefficients in the suggested model are 

linear. 

 

Assumption 2. The values of the explanatory variables are recorded without 

error. 

● The data values appear to be valid, with no evident outliers. However, certainty cannot 

be ensured without knowledge of the precision of the measurement tools used during 

data collection. 

 

Assumption 3. The explanatory variables are fixed in repeated samples. 

● We assume the validity of this assumption. 

 

Assumption 4. Reasonable variation in the values of the explanatory 

variables. 

● This assumption is valid as the data values are different to each other. 

 

Assumption 5. The sample size must be greater than the number of 

parameters to be estimated. 

● Sample size (𝑛) = 20 and parameters (𝑝) = 6, meaning that𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚 =

 𝑛 − 𝑝 = 20 − 6 = 14.  

The assumption is valid since 𝑛 >  𝑝. 

 

Assumption 6. No multicollinearity between the explanatory variables in 

multiple regression models. 

● Check multicollinearity using Variance Inflation Factor (VIF). 

 

 

 

 

 

 



 

 

R output: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The VIF values and bar chart show BSA and Weight having values greater than 5, which 

indicates potential multicollinearity. 

 

BSA formula: 𝐵𝑆𝐴 (𝑚2) = √
𝑊𝑒𝑖𝑔ℎ𝑡 (𝑘𝑔) ∗ 𝐻𝑒𝑖𝑔ℎ𝑡 (𝑐𝑚)

3600
  

 

The formula shows BSA as a function of Weight, confirming that they’re directly related. 

Thus, it is better to drop Weight and keep BSA. Likely, BSA is a better overall measure for 

studying blood pressure as it accounts for body size in a standardized way. 

 

 



 

 

● Re-Checking multicollinearity using Variance Inflation Factor (VIF). 

 

R output: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dropping Weight has significantly reduced BSA’s VIF value. Multicollinearity assumption 

is now satisfied. 



 

 

Model fitting 

 

From R output:  

● The residuals range from -2.3687 to 2.8020. The range suggests that there are some 

observations where the model predictions deviate significantly from the actual values. 

● The explanatory variables Age, BSA and Pulse are statistically significant (P-Value 

< 0.05), i.e. their contribution to the model is higher than the other explanatory 

variables, while Dur and Stress are statistically insignificant (P-Value > 0.05) and 

can be removed from the model without losing much of its predictive power. 

● The Adjusted 𝑅2 value is 0.8998, meaning that 89.98% of the variation in Blood 

Pressure is explained by Age, BSA, Dur, Pulse and Stress. 

● The F-statistic value is 35.14. Since the value is large enough and P-Value is smaller 

than 0.05, then the entire model is statistically significant and is a good fit. 

 



 

 

A.N.O.V.A 

Analysis of variance is a hypothesis test used in regression analysis to study the effect of the 

regression coefficients. 
 

𝐻0: 𝛽0 = 𝛽1 = 𝛽2 = 𝛽3 = 𝛽4 = 𝛽5 = 𝛽6 = 0   

𝐻1: 𝐴𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 ≠ 0  
 

 

 

The A.N.O.V.A table confirms the statistical significance of the Age, BSA and Pulse 

variables, being the most important variables to the model. As well as the statistical 

significance of the model and it being a good fit. 

Decision: Reject the null hypothesis, the model is significant. 

 

 

 

 

 



 

 

Random part assumptions 

● Check that E(𝜖𝑖) = 0 and V(𝜖𝑖) = 𝜎2 for 𝑖 =  1,2, . . . ,20  

 

 

 
 

 

 

 

 

 

 

 

 

 

                             (1)                                                                                        (2) 

 

 

From plot (1): The data points seem to be randomly scattered around zero thus making 

E(𝜖𝑖) = 0, variance seems to be constant across the residuals.  

Meaning that the deterministic part of the model captures the non-random structure in the 

data and the errors scale of variability are constant at all values of the covariate. 

 

 

From plot (2): The plot is used to have a better look at the homoscedasticity assumption. 

Here, it shows a relatively flat horizontal line. Meaning that the homoscedasticity is likely 

satisfied, and the variance is constant, confirming plot (1)’s assumption. 

 

 

 

● Check the assumption of independent errors, i.e. Cov(𝜖𝑖 , 𝜖𝑗) = E(𝜖𝑖𝜖𝑗) = 0, for i ≠ j. 

 In this assumption, there is no intuitive natural order that we know about in the explanatory 

variable. So, we can assume independence between the errors. 

 

 

 



 

 

● Check that 𝜖𝑖 ~ N(0, 𝜎2) for 𝑖 =  1,2, . . . ,20 , i.e. The normality of the error term. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the plot: There are deviations from the equity line, meaning that the normality 

assumption is most likely invalidated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

● Checking Cook’s distance for influential points or outliers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the plot: The points 11, 16 and 18 are potential outliers that need to be addressed. 

 

 

 

 

Assumptions Conclusions 

After checking the assumptions, it appears that a data transformation is needed to alleviate 

the normality of the error term and the outliers. 

 

The most common transformation is the Log transformation. 



 

 

Model and Assumptions after Log-Transformation 

 
 

From R output:  

● The residuals range has changed to: from -0.022232 to 0.025774, and this range is 

relatively small. This suggests that the model's predictions are quite accurate, with the 

largest error being only about 0.0257 units. 

● The multiple 𝑅2 value is 0.901, which is slightly better than the normal model’s value 

(0.8998). However, the value is still neighboring 1, thus making 90.1% of the 

variation in Blood Pressure is explained by Age, BSA, Dur, Pulse and Stress. 

● The statistical significance of the variables has not changed from the full model. 

● The F-statistic value is 35.5. Since the value is still large enough with a small P-

Value, then the entire model is statistically significant and is a good fit. 

 

 

 

 

 



 

 

● Check that E(𝜖𝑖) = 0 and V(𝜖𝑖) = 𝜎2 for 𝑖 =  1,2, . . . ,20  

 

 

 

 

 

 

 

                            (1)                                                                                    (2) 

  

 

From plot (1): The data points seem to be still randomly scattered around zero and 

E(𝜖𝑖) = 0 and variance of the error term is constant across the residuals. 

Meaning that the deterministic part of the model still captures the non-random structure in 

the data and the errors scale of variability are constant at all values of the covariate, even 

after the log-transformation. 

 

From plot (2): The horizontal line is still relatively flat; thus, the homoscedasticity 

assumption is likely satisfied. 

 

 

 

 

 

 

 

 

 

 



 

 

● Check that 𝜖𝑖 ~ N(0, 𝜎2) for  𝑖 =  1,2, . . . ,20 , i.e. The normality of the error term. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the plot: The normality seems to have improved due to the log-transformation, since 

the deviations from the equity line have lessened.  

 

 

 

 

 

 

 



 

 

● Check for outliers or influential points. 

 

 

 

 

 

 

 

 

 

 

 

 

From the plot: There are no influential points, since the points do not fall on the dashed lines 

(which represent Cook’s distance). 

 

 

 

 

 

 

 



 

 

Conclusion 

After conducting the regression analysis, the best fitted model is: 

𝐿𝑜𝑔(𝐵𝑙𝑜𝑜𝑑 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒)̂ =  �̂�0 + �̂�1𝐴𝑔𝑒 + �̂�2𝐵𝑆𝐴 + �̂�3𝐷𝑢𝑟 + �̂�4𝑃𝑢𝑙𝑠𝑒 + �̂�5𝑆𝑡𝑟𝑒𝑠𝑠  

 

Substituting �̂�𝑖  for their estimated values (for 𝑖 =  1,2, . . . ,20 ): 

 

𝐿𝑜𝑔(𝐵𝑙𝑜𝑜𝑑 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒)̂ =  3.7897406 + (0.0047987)𝐴𝑔𝑒 + (0.2132823)𝐵𝑆𝐴     

+(0.0006456)𝐷𝑢𝑟 + (0.0041698)𝑃𝑢𝑙𝑠𝑒 − (0.0001563)𝑆𝑡𝑟𝑒𝑠𝑠 

  

Model Interpretation 

Intercept (3.7897406): 

● This is the estimated log of blood pressure when all the predictors (Age, BSA, Dur, 

Pulse, and Stress) are equal to zero. Although interpreting the intercept alone might 

not always be meaningful in a real-world context (since age, pulse, and stress are 

unlikely to be zero), it's necessary for the model calculation. 

Age (0.0047987): 

● For each 1-year increase in age, the average log-transformed blood pressure is 

expected to increase by 0.47987%, holding all other variables constant. 

● In practical terms, this suggests that older individuals tend to have slightly higher log-

transformed blood pressure values, but the effect is relatively small. 

BSA (0.2132823): 

● For each 1-unit increase in Body Surface Area (BSA), the average log-transformed 

blood pressure is expected to increase by 21.32823%, holding all other variables 

constant. 

● This suggests a positive association between BSA and blood pressure, meaning larger 

individuals (in terms of body surface area) tend to have higher blood pressure values. 

Dur (0.0006456): 

● For each 1-unit increase in Dur (perhaps duration of some activity or condition), the 

average log-transformed blood pressure increases by 0.06456%, holding other 

variables constant. 



 

 

● This suggests a very slight positive relationship between duration and blood pressure, 

though the effect is quite small. 

Pulse (0.0041698): 

● For each 1-unit increase in pulse rate, the average log-transformed blood pressure 

increases by 0.41698%, holding other variables constant. 

● This indicates a positive relationship, meaning individuals with higher pulse rates tend 

to have slightly higher log-transformed blood pressure. 

Stress (-0.0001563): 

● For each 1-unit increase in stress, the average log-transformed blood pressure 

decreases by 0.01563%, holding other variables constant. 

● Interestingly, this suggests that higher stress is associated with slightly lower log-

transformed blood pressure, although this relationship is very weak. 
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Appendix 

The code used in the analysis: 
 

# ---------------- Load Required Libraries ---------------- 

# Install required packages if they are not already installed 

required_packages <- c("readr", "ggplot2", "car", "MASS", "lmtest", "GGally") 

missing_packages <- required_packages[!(required_packages %in% 

installed.packages()[, "Package"])] 

if (length(missing_packages)) install.packages(missing_packages) 

 

# Load libraries 

library(readr)   # For reading the data 

library(ggplot2) # For data visualization 

library(car)     # For diagnostic checks 

library(MASS)    # For stepwise variable selection 

library(lmtest)  # For statistical tests (e.g., Breusch-Pagan test) 

library(GGally)  # For correlation pair plots 

 

# ---------------- Load and Inspect Data ---------------- 

# Define the file path for the dataset 

file_path <- "C:/Users/MSI/Downloads/bloodpress.txt" 

 

# Load the data from a tab-delimited file 

data <- read_delim(file_path, delim = "\t") 

 

# Display the first few rows of the data 

cat("\n--- First Few Rows of the Data ---\n") 

print(head(data)) 

 

# Visualize correlation matrix 

ggpairs(data) 

 

# ---------------- Diagnostic Checks ---------------- 

# Fit the full model 

model_full <- lm(BP ~ Age + Weight + BSA + Dur + Pulse + Stress, data = data) 

 



 

 

# Multicollinearity Check: Variance Inflation Factor (VIF) 

cat("\n--- Multicollinearity Check: Variance Inflation Factor ---\n") 

vif_values <- vif(model_full) 

print(vif_values) 

 

cor(data$Weight, data$BSA) 

 

# Convert VIF values to a data frame for plotting 

vif_df <- data.frame(Variable = names(vif_values), VIF = vif_values) 

 

# Set a threshold to indicate high VIF 

high_vif_threshold <- 5 

 

# Create a ggplot bar plot to visualize VIF values 

ggplot(vif_df, aes(x = Variable, y = VIF)) + 

  geom_bar(stat = "identity", fill = "steelblue") + 

  geom_hline(yintercept = high_vif_threshold, linetype = "dashed", color = "red") 

+ 

  scale_y_continuous(limits = c(0, max(vif_df$VIF) + 1)) + 

  labs(title = "Variance Inflation Factor (VIF) for Regression Model", 

       y = "VIF", 

       x = "Variable") + 

  theme_minimal() + 

  theme(axis.text.x = element_text(angle = 45, hjust = 1)) 

 

# ---------------- Reduced Model ---------------- 

# Fit a reduced model 

model_reduced <- lm(BP ~ Age + BSA + Dur + Pulse + Stress, data = data) 

 

# Display the summary of the reduced model 

print(summary(model_log)) 

summary(model_reduced) 

 

# ---------------- Reduced Model Diagnostic Plots ---------------- 

# 1. Linearity Check: Residuals vs Fitted values 

plot(model_reduced, which = 1) 

 



 

 

# 2. Normal Q-Q Plot 

plot(model_reduced, which = 2)  # Normal Q-Q 

 

# 3. Scale-Location Plot 

plot(model_reduced, which = 3)  # Scale-Location 

 

# 4. Cook's Distance Plot 

plot(model_reduced, which = 4)  # Cook's Distance 

 

# 5. Multicollinearity Check: Variance Inflation Factor (VIF) 

cat("\n--- Multicollinearity Check: Variance Inflation Factor ---\n") 

vif_values <- vif(model_reduced) 

print(vif_values) 

 

# Convert VIF values to a data frame for plotting 

vif_df2 <- data.frame(Variable = names(vif_values), VIF = vif_values) 

 

# Create a ggplot bar plot to visualize VIF values 

ggplot(vif_df2, aes(x = Variable, y = VIF)) + 

  geom_bar(stat = "identity", fill = "steelblue") + 

  geom_hline(yintercept = high_vif_threshold, linetype = "dashed", color = "red") 

+ 

  scale_y_continuous(limits = c(0, max(vif_df$VIF) + 1)) + 

  labs(title = "Variance Inflation Factor (VIF) for Regression Model", 

       y = "VIF", 

       x = "Variable") + 

  theme_minimal() + 

  theme(axis.text.x = element_text(angle = 45, hjust = 1)) 

 

# ---------------- Hypotheses Testing ---------------- 

# 1. Null hypothesis: All coefficients of predictors are zero (no effect). 

# 2. Alternative hypothesis: At least one predictor has a non-zero effect. 

 

# Perform an F-test for the overall significance of the model 

anova_full <- anova(model_reduced) 

cat("ANOVA Table:\n") 

print(anova_full) 



 

 

cat(sprintf("F-statistic: %.2f, p-value: %.4f\n", anova_full$`F value`[1], 

anova_full$`Pr(>F)`[1])) 

if (anova_full$`Pr(>F)`[1] < 0.05) { 

  cat("Result: Reject the null hypothesis. The model is significant.\n") 

} else { 

  cat("Result: Failed to reject the null hypothesis. The model is not 

significant.\n") 

} 

# ---------------- Log-Transformed Reduced Model ---------------- 

cat("\n--- Log-Transformed Model ---\n") 

# Fit a log-transformed model 

model_log <- lm(log(BP) ~ Age + BSA + Dur + Pulse + Stress, data = data) 

 

# Display the summary of the log-transformed model 

print(summary(model_log)) 

 

# Diagnostic plots for the log-transformed model 

plot(model_log, main = "Diagnostic Plots for Log-Transformed Model") 

if (bp_test$p.value < 0.05) { 

  cat("Homoscedasticity assumption violated. Log-transformed model may better 

satisfy assumptions.\n") 

} 

 

# ---------------- Final Model Diagnostic Plots ---------------- 

cat("\n--- Diagnostic Plots for Final Model ---\n") 

 

# 1. Residuals vs Fitted Plot 

plot(model_log, which = 1)  # Residuals vs Fitted 

 

# 2. Normal Q-Q Plot 

plot(model_log, which = 2)  # Normal Q-Q 

 

# 3. Scale-Location Plot 

plot(model_log, which = 3)  # Scale-Location 

 

# 4. Cook's Distance Plot 

plot(model_log, which = 4)  # Cook's Distance 


